Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae.

نویسندگان

  • Jacques Régnière
  • Barbara Bentz
چکیده

Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following winter. Using observed SCPs of field-collected D. ponderosae larvae throughout the developmental season and associated phloem temperatures, we developed a mechanistic model that describes the SCP distribution of a population as a function of daily changes in the temperature-dependent processes leading to gain and loss of cold tolerance. It is based on the changing proportion of individuals in three states: (1) a non cold-hardened, feeding state, (2) an intermediate state in which insects have ceased feeding, voided their gut content and eliminated as many ice-nucleating agents as possible from the body, and (3) a fully cold-hardened state where insects have accumulated a maximum concentration of cryoprotectants (e.g. glycerol). Shifts in the proportion of individuals in each state occur in response to the driving variables influencing the opposite rates of gain and loss of cold hardening. The level of cold-induced mortality predicted by the model and its relation to extreme winter temperature is in good agreement with a range of field and laboratory observations. Our model predicts that cold tolerance of D. ponderosae varies within a season, among seasons, and among geographic locations depending on local climate. This variability is an emergent property of the model, and has important implications for understanding the insect's response to seasonal fluctuations in temperature, as well as population response to climate change. Because cold-induced mortality is but one of several major influences of climate on D. ponderosae population dynamics, we suggest that this model be integrated with others simulating the insect's biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), larvae

Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol produ...

متن کامل

Comparison of a-pinene and myrcene on attraction of mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) to pheromones in stancls of western white pine

Multiple-funnel traps baited with exo-brevicomin and a mixture of cisand transverbenol were used to test the relative attractiveness #If myrcene and (-)-a-pinene to the mountain pine beetle, Dendroctonus ponderosae Hopkins, in a s tand of western white pine, Pinus mont icola Doug]. Traps baited with myrcene caught significantly more D. ponderosae than traps baited with (-)-a-pinene, irrespectiv...

متن کامل

The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins.

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just befo...

متن کامل

Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-...

متن کامل

Holocene records of Dendroctonus bark beetles in high elevation pine forests of Idaho and Montana, USA

Paleoecological reconstructions from two lakes in the U.S. northern Rocky Mountain region of Idaho and Montana revealed the presence of bark beetle elytra and head capsules (cf. Dendroctonus spp., most likely D. ponderosae, mountain pine beetle). Occurrence of these macrofossils during the period of time associated with the 1920/1930 A.D. mountain pine beetle outbreak at Baker Lake, Montana sug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of insect physiology

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2007